Sparse Model Identification Using a Forward Orthogonal Regression Algorithm Aided by Mutual Information
نویسندگان
چکیده
منابع مشابه
A Sparse Kernel Density Estimation Algorithm Using Forward Constrained Regression
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the...
متن کاملAn iterative orthogonal forward regression algorithm
A novel iterative learning algorithm is proposed to improve the classic orthogonal forward regression (OFR) algorithm in an attempt to produce an optimal solution under a purely OFR framework without using any other auxiliary algorithms. The new algorithm searches for the optimal solution on a global solution space while maintaining the advantage of simplicity and computational efficiency. Both...
متن کاملAn Elastic Net Orthogonal Forward Regression Algorithm
In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optim...
متن کاملSparse model identification using orthogonal forward regression with basis pursuit and D-optimality - Control Theory and Applications, IEE Proceedings-
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm ba...
متن کاملAn orthogonal forward regression technique for sparse kernel density estimation
Using the classical Parzen window (PW) estimate as the desired response, the kernel density estimation is formulated as a regression problem and the orthogonal forward regression technique is adopted to construct sparse kernel density (SKD) estimates. The proposed algorithm incrementally minimises a leave-one-out test score to select a sparse kernel model, and a local regularisation method is i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 2007
ISSN: 1045-9227
DOI: 10.1109/tnn.2006.886356